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ABSTRACT

A self-contained analysis for arbitrary circulation controlled airfoils in incom-
pressible flow is developed. The analysis predicts the blowing slot conditions re-
quired to produce a specified 1ift coefficient on a given airfoil with given free
stream conditions.

An iterative procedure is used to find the blowing slot conditions that allow the
Thwaites condition of constant pressure in the separated region to be satisfied. With
the input given, a potential flow analysis is performed using the Theodorsen method.
Boundary layer analyses for the lower and upper surfaces then yield the separation
pressure on the lower surface and the boundary layer properties at the slot on the
upper surface. The flow is initially laminar and usually becomes turbulent. The
Cebeci, Smith finite difference method is used and an eddy viscosity model is used for
turbulent flow: Blowing slot values are assumed and a turbulent wall jet analysis is
performed to determine the wall pressure at separation on the upper surface. If the
two separation pressures, upper and lower, do not agree, new slot values are assumed
and the wall jet analysis is repeated. Wall jet calculations include curvature effects
on the jet and external flows, and approximate corrections for large pressure
gradients. An eddy viscosity model is used but is modified to allow a negative shear
stress at the velocity maximum. A fully developed laminar or turbulent channel flow is
used for the slot profile. A finite difference method based on the Keller, Cebeci
method is used for wall jet calculationms.

Calculations are performed and compared to Kind's experimental data. Results are
in good agreement for the blowing coefficient and local flow details.
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ABSTRACT

A self-contained analysis for arbitrary circulation controlled
airfoils in incompressible flow is developed. The analysis predicts
the blowing slot conditions required to produce a specified lift co-
efficient on a given airfoil with given free stream conditions.

An iterative procedure is used to find the blowing slot con-
ditions that allow the Thwaites condition of constant pressure in
the separated region to be satisfied. With the input given, a pot-
ential flow analysis is performed using the Theodorsen method.
Boundary layer analyses for the lower and upper surfaces then yield
the separation pressure on the lower surface and the boundary layer
properties at the slot on the upper surface. The flow is initially
laminar and usually becomes turbulent. The Cebeci, Smith finite dif-
ference method is used and an eddy viscosity model is used for tur-
bulent flow. Blowing slot values are assumed and a turbulent wall
jet analysis is performed to determine the wall pressure at separa-
tion on the upper surface. If the two separation pressures, upper
and lower, do not agree, new slot values are assumed and the wall jet
analysis is repeated. Wall jet calculations include curvature effects
on the jet and external flows, and approximate corrections for large
pressure gradients. An eddy viscosity model is used but is modified
to allow a negative shear stress at the velocity maximum. A fully
developed laminar or turbulent channel flow is used for the slot pro-

file. A finite difference method based on the Keller, Cebeci method
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is used for wall jet calculations.
Calculations are performed and compared to Kind's experimental
data. Results are in good agreement for the blowing coefficient and

local flow details.
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1. INTRODUCTION

Interest in STOL flight has led to an interest in circulation
controlled airfoils. A circulation controlled airfoil has a bluff
trailing edge with a tangential blowing slot located slightly up-
stream of the trailing edge. Experiments by Kind (Refs. 4, 5, 15)
and later by others have shown that such an airfoil can produce re-
latively high 1ift coefficients for relatively low blowing rates from
the slot. Circulation controlled airfoils thus provide a relatively
simple and efficient method of obtaining STOL flight.

The principle of a circulation controlled airfoil is based on
the fact that there are any number of valid potential flow solutions
(each with a different value of the circulation, and therefore 1ift)
for an airfoil with a bluff trailing edge. In a real (viscous) fluid,
the circulation that will actually develop depends on the separation
characteristics on the upper and lower surfaces. By introducing
blowing on the upper surface, separation on the upper surface is de-
layed. As the blowing is increased, the upper surface separation
point moves further back around toward the lower surface. As this
occurs, the potential flow rear stagnation point also moves down, and
thus the front stagnation point and the circulation are altered. The
blowing therefore causes the flow over the entire airfoil to be alter-
ed. A relatively small change in the location of the stagnation
point results in a large change in the circulation, and therefore in
the 11ft. Since the blowing is used only to delay separation, the

amount required is small compared to that required for a jet flap.




The blowing is effective in delaying separation because of the
Coanda effect. This effect (Ref. 2) refers to the ability of a plane
wall jet to follow the contour of a convex curved boundary adjacent
to it. Downstream of the blowing slot, a wall jet develops on the
convex surface of the airfoil. Because of the Coanda effect, the
wall jet tends to remain attached to the surface. Since the wall jet
is considerably more energetic than the conventional boundary layer
that would exist if the wall jet were not present, the wall jet can
resist separation for a significantly longer distance.

The flow conditions on a circulation controlled airfoil are in-
dicated in Fig. 1. Beginning at the front stagnation point, a bound-
ary layer develops along the lower surface and eventually separates.
Also beginning at the front stagnation point, a boundary layer de-
velops along the upper surface and eventually reaches the blowing
slot. Both the upper and lower surface boundary layer are initially
laminar and then usually become turbulent. A turbulent wall jet de-
velops downstream of the blowing slot and eventually separates. A
typical wall jet development is illustrated in Fig. 2. A separation
region exists between the wall jet separation point and the lower sur-
face boundary layer separation point.

For a given airfoil with given free stream conditions, the upper
surface separation point is determined by the amount of blowing used.
A change in the airfoil shape or free stream conditions also results
in a change in the separation point, so the circulation is a function

of the airfoil shape, free stream conditions, and blowing rate.




The purpose of the present analysis is to obtain a self-
contained procedure to predict the performance of arbitrary circul-
ation controlled airfoils. An outline of the procedure is given in

the next section.




2. OUTLINE OF THE THEORY

The purpose of the present analysis is to predict the blowing
slot conditions required to produce a specified lift coefficient
for a given circulation controlled airfoil with given free stream
conditions. This section presents an outline of the calculation
procedure and general considerations involved. The following three
sections present details of the calculations along with a review of
the pertinent literature.

Input for the present analysis consists of the airfoil geometry,
the angle of attack X , the free stream Reynolds number Tzeoo , and
the prescribed lift coefficient C, . The airfoil geometry includes
the location and thickness of the blowing slot, which is assumed to
be tangential to the airfoil surface.

With the input given, a potemtial flow analysis is performed.
The potential flow analysis provides the location of the front stag-
nation point, the rear (potential flow) stagnation point, and the
velocity and pressure distribution around the airfoil. The velocity
and pressure distributions are then converted to the form required
for a boundary layer analysis.

A boundary layer analysis is then performed for the lower sur-
face of the airfoil. The analysis starts at the front stagnation
point and proceeds downstream until separation occurs. With the lo-
cation of the separation point known, the pressure coefficient at sep-
aration on the lower surface CTPSGPL_ is known from the potential

flow analysis. The boundary layer flow is initially laminar, but




usually becomes turbulent before separation occurs. For low Reynolds
numbers the flow may remain laminar, but in either case the analysis
determines ‘:PSGPL-

@ boundary layer analysis is also performed for the upper sur-
face of the airfoil. The analysis starts at the front stagnation
point and proceeds downstream to the blowing slot. In general, the
last point at which boundary layer calculations are performed is
slightly upstream of the blowing slot; however, the boundary layer
properties at this point are used for the boundary layer properties
at the blowing slot. The upper surface boundary layer is also init-
ially laminar, but becomes turbulent before it reaches the blowing
slot. Because of the prevailing pre;sure gradients, the upper sur-
face boundary layer will normally become turbulent even for relativ-
ely low Reynolds numbers. If the boundary layer separates upstream
of the blowing slot, calculations are terminated. If the boundary
layer remains attached at the slot, the analysis provides the bound-
ary layer properties at the slot.

A turbulent wall jet analysis is then performed. The analysis
begins at the blowing slot and proceeds downstream until separatiop
occurs. When separation occurs, the wall pressure coefficient at
separation on the upper surface CBSET>U is known from the wall jet
analysis. The correct blowing slot conditions are those conditions
that result in a constant wall pressure 1; the separated region,
l.e., Cp, . LT CchEPL . This is known as the Thwaites condition

(Ref. 10), and is also experimentally justified. Since it is nec-




essary to know the blowing slot conditions in order to perform the
wall jet calculations to determine (%ESiPu » an iterative proced-
ure is required. Blowing slot conditions are assumed and these con-
ditions, along with the known upstream boundary layer properties,
provide the starting conditions for the turbulent wall jet analysis.
Wall jet calculations are then performed from the blowing slot down-
stream until separation occurs, yielding a value of C3_ ¢ u In

general, the calculated value of C will not equal the pre-

2gery

viously determined value of (lPszﬁ>L . New blowing slot conditioms

are then assumed and the wall jet calculations are repeated until

- al
C and (.
_/‘).“7 iy P ser L

Then the Thwaites condition is satisfied, and the assumed blowing

agree to within a prescribed tolerance.

slot conditions are the correct ones for the prescribed input con-
ditions.

The procedure described above constitutes a self-contained
analysis of circulation controlled airfoils, provided the calcula-
tions can be performed for arbitrary airfoil shapes without the use
of experimental data. Well developed and tested general methods are
available for the potential flow and boundary layer calculatioms.
The wall jet region is one of high complexity. Theories for this
region are presently semi-empirical relying as they do on experimen-
tal data such as the surface pressure distribution. A major effort
in this work involved the generation of a self-contained analysis

for the wall jet region.




The potential flow is calculated by the Theodorsen method (Ref.
7) of conformal transformation. This is an exact method and applies
to arbitrary airfoil shapes. It can also be used without difficulty
in the present application where the 1lift coefficient is prescribed.
Details of the method are given in Section 3.

Boundary layer calculations are performed using the Cebeci,
Smith finite difference method (Ref. 8). For turbulent flow, the
Reynolds stresses are evaluated using an eddy viscosity coefficient,
while for laminar flow the eddy viscosity coefficient is set equal
to zero. The method provides an exact numerical solution for lam-
inar flow, and has been found to be one of the better methods for
turbulent flow (Ref. 13). Transition from laminar to turbulent flow
is assumed to occur when the momentum thickness Reynolds number is
640 for a favorable pressure gradient or 320 for an adverse pressure
gradient. Gaster's (Ref. 9) experimental relations for the bursting
of short laminar separation bubbles are also included in the tran-
sition cirteria if the flow is approaching laminar separation. If
trip wires are used, transition is assumed to occur at the location
of the trip wire (if transition has not already occurred upstream of
the wire). Separation for either laminar or turbulent flow is de-
termined by the wall shear stress becoming zero. Details of the
method are given in Section 4.

There are several difficulties that complicate the wall jet an-
alysis. The presence of the upstream boundary layer means that there

is always a relative minimum in the velocity profile for some dis-

tance downstream of the blowing slot. For typical circulation con-




trolled airfoil applications, however, the velocity minimum is only
significant for a relatively short distance downstream of the slot.
The wall jet profile of most significance for circulation control
applications is therefore one with a velocity maximum but no minimum,
The inner portion (below the velocity maximum) of such a profile has
features of a conventional turbulent boundary layer, while the outer
portion (above the velocity maximum) has features of a free turbulent
jet. These analogies are not exact, however, because the two regions
develop simultaneously. Eddy viscosity models seem to give reason-
able shear stress results for most of the inner and outer regioms,
but in general a somewhat arbitrary fairing is required to obtain a
continuous eddy viscosity distribution. This is because the eddy
viscosity in the outer region tends to be much larger (a difference
of a factor of 10 is not uncommon). Of perhaps more fundamental
importance is the fact that an eddy viscosity model does not seem to
be accurate near the velocity maximum. Experiments show that the
shear stress near the velocity maximum is usielly negative, with a
magnitude comparable to the wall shear stress. However, an eddy vis-
cosity approach gives a zero shear stress at the velocity maximum.
In the case of a flow with curvature an eddy viscosity approach gives
a nonzero shear stress at the velocity maximum, but the magnitude of
the shear stress is nowhere near large enough to agree with experi-
ment.

For circulation control applications, additional direct and in-
direct difficulties arise because the streamlines have a small radius

of curvature. This results from a small surface radius of curvature




plus the Coanda effect. A conventional order of magnitude analysis
shows that the radius of curvature of a streamline is ( R+ ¥y ),
where 1L 1is the surface radius of curvature and Yy 1is the normal
coordinate of the streamline. The normal pressure gradient is there-
fore no longer negligible and the pressure varies across the jet.
From the irrotational flow results, ﬁhich must also be corrected for
curvature effects, the velocity and pressure are known at the outer
edge of the jet. However, the pressure in the jet, including the
wall pressure, must be calculated during the wall jet solution.
These direct curvature effects can be handled without difficulty

by retaining appropriate curvature terms in the equations; however,
the indirect effects of curvature are more of a problem. The most
significant indirect effect is that large potential flow velocity
and pressure gradients are associated with a small surface radius of
curvature, As a result of the sustained severe adverse pressure
gradient, the wall jet thickens rapidly, and a streamline radius of
curvature is no longer equal to ( X+ Y ). If this effect is not
adequately accounted for, the calculated wall pressure will not be
accurate, so separation cannot be determined accurately. Retaining
additional terms in the y momentum equation can account for this
effect. Unfortunately, however, the significant additional term re-
quired cannot be handled exactly within boundary layer theory since
it involves second order streamwise derivatives. Over the region
where the above correction is required, an analogous correction to
the potential flow velocity is required to obtain an accurate value

for the outer edge of the jet.
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Curvature also tends to increase the shear stress in the outer
portion of the jet, and tends to decrease it in the inner portion.
Corrections are available to account for this, but additional uncer-
tainties are introduced since the outer turbulence spilling over in-
to the inner region tends to offset the decrease in the inner region.
A final difficulty, which is not inherent but is common, is that
many circulation controlled airfoils have a discontinuous radius of
curvature at the blowing slot. This results from truncating the air-
foil at the blowing slot and adding a circular trailing edge in
place of the truncated portion. In general, it is possible to do
this and still maintain a continuous shape and slope, but the radius
of curvature is normally discontinuous. PFor calculations, the
radius can be faired in, but it seems one fairing is appropriate for
the wall jet equations while another is appropriate for the outer
edge conditions.

The basic formulation of the wall jet problem consists of the
boundary layer equations for the case where the surface radius of
curvature is the same order of magnitude as the thickness of the
viscous region. The turbulent Reynolds stresses are evaluated in
terms of an eddy viscosity coefficient. This basic formulation is
altered to allow the shear stress to be negative at the velocity max-
imum, and to correct the )/ momentum equation for streamline curva-
ture effects that are not adequately described by conventional
boundary layer approximations. These alterations were found to be

necessary in order to obtain useful results, although the need for
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them could probably be reduced by use of experimental data in the
calculations. The shear stress modification applies near the velo-
city maximum and is based on an extension of mixing length theory.
The curvature modification uses average values to approximate a term
that is otherwise unmanageable. Both of these modifications are pre-
liminary, but seem to be workable. To obtain the outer boundary con-
ditions, the potential flow velocity is modified by a standard cur-
vature correction along with an additional correction similar to

that used in the wall jet. The pressure is obtained from the vel-
ocity and total pressure, where the total pressure allows for the
remains of the upstream boundary layer. This procedure is used for
the outer edge conditions downstream of the point where the velocity
minimum essentially disappears. Upstream of that point, the wall jet
calculations include the relative minimum velocity, and the outer
edge conditions apply at a point corresponding to the outer edge of
the upstream boundary layer. Outer edge conditions for this region
are taken as the uncorrected potential flow velocity and pressure.
The reasons for using different conditions for the two regions are to
allow for the curvature discontinuity that typically occurs at the
slot, and to switch smoothly from a profile with a relative minimum
velocity to one without a minimum.

The wall jet equations are solved by a finite difference method
based on the Keller, Cebeci method (Ref. 14). Details are given in
Section 5. Although most wall jet analyses use integral methods, a
finite difference method was selected since it offered some potential

advantages, such as being able to determine separation by the wall
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shear stress becoming zero, having the possibility of more flexabil-
ity in handling profiles with a minimum velocity, and being able to
start at the slot without requiring a separate mixing region analysis.
A disadvantage is that more detailed information is required, but the
more elaborate integral methods require almost the same information.
Since the wall jet calculations are repeated during the iterative
procedure, a relatively quick and efficient procedure is required.
Also, the shape of a wall jet profile can require two to three times
as many grid points as a conventional boundary layer in order to ob-
tain comparable accuracy in the solution. Therefore, a method that
is capable of reasonable accuracy with a relatively coarse grid is
helpful. The Keller, Cebeci method satisfies these requirements and

is relatively easy to use and was therefore selected.




13

3. POTENTIAL FLOW ANALYSIS

The potential flow is found by the Theodorsen method of con-
formal transformation. This is a direct method for finding the po-
tential flow over a given arbitrary, closed two-dimensional body.

The method is exact although in practice solutions must be obtained
numerically. The Theodorsen method is reviewed herein in sufficient
detail so that the computer program in the Appendix can be under-
stood. Additional details may be found in Ref. 7.

It is well known from potential flow theory that the flow over
a given airfoil can be found by conformally transforming the airfoil
shape into a circle. The Theodorsen method transforms the given air-
foil shape into a circle with the aid of an intermediate transforma-
tion as shown in Fig. 3. The reason for using the intermediate tran-
sformation and for taking the airfoil coordinate system as shown is
that convergence of the final transformation is enhanced.

The first transformation maps the airfoil shape ( Z plane)
into a "nearly circular" curve C' in the 2‘ plane. The transforma-

tion is analogous to a Joukowski transformation, and is given by

B?.

_ /
Z = Z + ?, (3-1)

where Z= X *+ z' Ye (3-2a)

(3-2b)
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The independent variables in the Z# I plane are taken as ( }"} W ).

The constant [, is defined by

gy = o~ Ree  Rre
— 1 2’
where ./"‘L( and K".,.c are the leading and trailing edge radii of

curvature of the airfoil.
Substituting (3-2) into (3-1) and equating real and imaginary

parts gives

N, = 2b coaw e W (3-3a)

/C. = :.’a'\‘)(dL Al AN .Q’ (3-3b)

This transformation is unique if (1) 1s restricted to O £ (I <2y,
Eq. (3-3) is then inverted to give () ()(Q) Y ) and ([J(Xc) \/:) .
Combining (3-3a) and (3-3b), and using trigonometric and hyperbolic

function identities yields

r— Ve 2
] D l r
P ;.[;\ 4_ \/K . (_g_/\ J (3-4a)
and
2 P 2/ Ye \-
bW = [~ R \/ . ("2") ] o
o) (e 12 -
. / - cXe Z Ye
where h{Xe,Ye)= )= \ZZ) - -'):3‘
N Ao
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The correct sign for ¢/ , and the correct quadrant for L) follow
by inspection of Eq. (3-3).

With §/(x. . )and U(Xc Y, Jknown, the first transformation is
omplete. That is, for each airfoil input point ( Xe, Ye ), a point
( v, ¢0 ) is found. The resulting points ( yJ,‘g) ) are considered
to form a function ﬂV =.§3(ow9. The curve C.’ in the zE/plane is
then given by Z' = b P_'p(")"e‘.“). The function P(U.)) is gener-
ally a slowly varying function (this is equivalent to saying ! is
"nearly circular") and is periodic with period 2.9 .

The transformation from the }Z' to the j' plane is now con-
sidered. Polar coordinates as shown in Fig. 3 are used, where (X,(p)
are taken as the independent variables. On the circle, which is cen-
tered at the origin, )\ = >‘K = constant, and the radius of the
circle is therefore 't = [, Q;Ek

The transformation used is

A s T P i A (3-5)
v m= 3M

. 2, e
where the constants ( ﬁ(ﬂ\ o ) are real. Since Z —> ] as

3
—> Q0 , the planes coincide at ©O and the free stream
conditions are the same in both. Substituting the respective polar
/
coordinates for - and j’ into (3-5) and equating real and im-

aginary parts of the resulting expression gives

& p :
r— A = Z_ T m \ﬁ.(w "(‘:Q,ﬂ:{ "'@m.-"‘“ m ;‘/
M= b
and
& E:"/ﬂk .
W= = 2, T A Brcemy K ommg)




16

The last two equations represent the mapping of any point in the f{‘

plane to the corresponding point in the L plane. The coefficients
7

( ;(m /5~1) are determined from the requirement that the curve =2
maps into the circle. Therefore, from this point on the variables

will be used in the restricted sense that ( ,'JJJ) define the curve

C!' oand (N , ‘v ) define the circle. Then, since )xz.)*on the

circle,
W= N +§=' (A, l8e Mg + By 1) (3-6a)
and

w-P=Z (B,.coamep--A, srnmg) (3-6b)

AN !
where — M i
&
A/’\ b/ﬂ X an
_ S
d/\(\ - ‘oﬁ‘ /:)A‘

Eq. (3-6a) is the standard form of a Fourier series, and it follows

that the coefficients are given by

Zfr
M= A= 7= | $Yo)oly

2.
{
o = ?f o) ccamq olg

&

Zn

By = '7? Jr YE) _aum g ely
o
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Eqs. (3-6a) and (3-6b) give 9/ and () as functions of QQ .
and the resulting points [V((p) , LU((O)I represent points on the
curve C' . From the ZZ' transformation it is known that '&P(w)
also represents the curve C' ; therefore, %’ and QD represent
the same dependent variable, but considered as a function of differ-
ent independent variables. The solution for the Z'f transformation
then requires a solution for the functions satisfying (3-6a) and
(3-6b) where §7<<*0 is a known function.

It is convenient to introduce a variable & defined by

€ =wW- (3-7)

Like ¢ , & may be considered a function of either 1y or @ ,
and a similar notation is employed, i.e., € = € (¢) = é'(w).
It follows from (3-6b) that & 1is periodic with period 277 .
Applying (3-6b) to a specific point on the circle qQ = qD'and using

the definition of the Fourier coefficients gives
2_77

{ ‘
{‘ﬁf () g e gt o

23

(@) =

2y
- ‘%J‘ (o) coom@ pamp! c/cp}

Interchanging the order of summation and integration, and using a

trigonometric identity then yields
9

€(y') = -7'? JA Y(Y) ;Z’ o m(@-9!) AP
o
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Introducing the rather obscure identity

(‘-q?

1 6o [(ZN-H)

; /
= Ao Tt B8R g v
y S

then yields

A)—7 oo

A~ e /
E(P') = L —;_’;—f%((p),cat 4/2-<P o

ZJ”

-5 J v

r_;(,,_,[-(z/uw) -
AM
. 2
The first integral is independent of )/ , while the second is zero

=1 4o

in the limit. The equation then becomes

2’
¢
€(@) = Zé?f W gy oot f_gi d¢ (3-8)
o

The integral in (3-8) is singular, and the Cauchy principle value
must be used. The integral is usually called Poisson's integral.
If the function SV((p) were known, (3-8) would be a definite

integral for £€((’). However, what is known is gj(u)), where

f) = &) - € , and (3-8) is therefore an integral equation in € .
The integral equation is solved by the method of successive approxi-
mations. Convergence of this method ultimately depends only on the
function 97(00) and the initial approximation éo for the function €.
For most airfoil shapes, ‘/7((,0) is a slowly varying function, €o=o
is a good initial guess, and only one step in the iteration is suffi-

cient for very good results. In this case, (3-8) can be reduced to
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g

€ (w') & € (w') = 2_,( fuﬂc CY(wldw  (3-9)

Eq. (3-9) gives é;(cu')as a definite integral since 57(LD) is known.
In general the integral must be evaluated numerically since g){uﬁis
only known numerically. This is done by prescribing a value of uJ',
performing the integration, and repeating this process until a suff=
icient number of points are obtained to define the éf(aﬁfunction.
with € (w) known, @(w) = (U — € (w)1is known, W () 1is
therefore known, and the second transformation is complete.

The velocity |/ on the surface of the airfoil is obtained from

thecomplex potential function. Since

oA U (2) ! -9
77—-’ ] airfoil (Hz=2U% ) yireon
it follows that
ol () AW(y) . A2 '{J'{'
V= oIz |airfoil j;TEr‘}circle: ZIEVLH'ZTE airfoil
(3-10)

The complex potential for flow over a circle of radius @ 1is

.._,»‘n,/ 22'& —2'0(
(S = cp it ate s v
1=y (76 FE) L LL g 5
H €« <3
Therefore
dw ) :ﬁe”‘) . L Tt
AT P T Z7

The lift coefficient (;2 is related to the circulation /7 by the

Kutta-Joukowski theorem, which gives
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Then

LU (®)

0€ \’
1) {c

| "4 I_,Q,uv\ ((P*O() + ._—_?7," 7 (3-11)

Taking differentials of iland j" (with )\ = >\)<) gives
(z + '___. ) oW

and o{..
‘ ; €\
g = & 1= 55 el

. A
Then, since [ = [) @ e g on the circle

X A E
be [ 1- =5 (3-12)

Sl ey

Differentiating (3-1) gives

ofZ2 1
Jzl T Z

{ : )
Using Z = b & e in the terms in parenthesis then yields

of 2!
oA &

- ‘;—’-‘: le! e (3-13)
foil — 25 . 0
airfoi b / 72.? # don 14)

Eqs. (3-10) through (3-13) then give the velocity on the airfoil sur-
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face as

«evfa, ,I Jn

-X) +
Wi B /AALN\(CD )

Voo = . } W -
/’_,cwm \r’ + /.‘w () [/ +' J
: ivu/

Eq. (3-14) applies to airfoils with either sharp or blunt trailing

_ (3-14)

edges. For an airfoil with a sharp trailing edge, ( ¥= O) w = 0)

at the trailing edge, and the Kutta condition becomes

2 C
T

|
G
[
+

’,W(q)-oi)*r W= 0

Since @ (0) = — € (o) » the Kutta condition becomes

- . =y 3-15
Cp= == om (E0) + ) Gl
The pressure coefficient on the airfoil surface follows from the
Bernoulli equation, and is given by
: U; Z
e= /- _) (3-16)
/3 / \Vy
The potential flow is then known since V% and (1P on the
airfoil surface are known. A different form of the potential flow
is required as input to the boundary layer program, however, and this
is considered next. Curvilinear coordinates shown in Fig. 1 are used,

and becomes . The curvilinear coordinate is measured
b e X

along the body surface from the front stagnation point, and it is

therefore necessary to determine the arc length along the airfoil.
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The arc length /| & between two given points ( Xe, ) )b . ) and
J

J
( X('-J'H ) \/Ccy'u )t
Xe « C/”H )
2] 1 I olXc \Z
)IYC \2 o f /+ = ; a(yc
(o

The first form of this equation is used for all increments except

those adjacent to the leading edge (and trailing edge, if the trail-

ing edge is blunt), where Oli: —» oo . For these increments,
[
the second form is used, but not directly since ?§¥5 is usua-
/e

11y known as a function of xt instead of Yh . The square root

term is expanded to give

ol xe of Xt ch
[re@2) = 1e £ (G + 0 (T)

Then

yC 1l ch‘ﬁ

ol Xe A Xe
f\/+(7lyc) 017/‘:— f(/c' -/c)+ f Ol)/c,) }
xv: xﬁ' “AXe

Each integral is evaluated numerically. With the arc lengths known,
the value of X 1s calculated for each output point (i.e., each
point at which the velocity \/b= Ug 18 known).

The functions §“* and /3 defined by (3-17) are also re-

quired.

v
P an
nlx

e
)= f u o (%) (3-17a)
(2]
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28¥ JIuwd

-

[N/ c*L ;)/(%) (3-17b)

where L(e* = //(e/ V;o‘
Both <% and /3 are evaluated at each output point by evalua-
ting the required integrals and derivatives numerically. The de-

rivatives are evaluated using least-square parabolas for five con-

secutive nonequally spaced points.
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4. BOUNDARY LAYER ANALYSIS

The boundary layer properties for both laminar and turbulent
flow are calculated using the Cebeci, Smith finite difference method.
The turbulent Reynolds' shear stresses are eliminated by using an
eddy viscosity expression. For laminar flow, the eddy viscosity is
set equal to zero, and the equations reduce to the classical laminar
boundary layer equations. Both the streamwise and normal derivatives
are replaced by finite difference expressions, and the resulting
algebraic equations are then solved by a matrix factorization method.
The Cebeci, Smith method has been extensively developed and tested
against experiments and other theories and has been found to be acc-
urate (Ref. 8). The method also predicts either laminar or turbulent
separation. The Cebeci, Smith method is reviewed herein in sufficient
detail so that the computer program in the Appendix can be understood.

The method has been developed for either two dimensional or ax-
isymmetric flows (with or without transverse curvature effects).

For incompressible turbulent boundary layers, the conservation equa-

tions are:

Continuity:
3 7 H€ 2
-a—x'\ﬁ “’CL)-(— -b-f(/té/‘)ﬂ') =0
Momentum:
., 2 ou. , P [ 9« =
— +o/ =i
ra Sy tro gy » &L /c‘ 3 1/ (w5 - d'v)|-
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where & ' for two dimensional flows, and € = / for axis-
ymmetric flows. The quantity /Z.(x) y) is the radius from the axis
of symmetry to the point being considered in the boundary layer.

In terms of the body geometry

(X Y) = A, (X)+0y £8L P(x)

where ./&w (7() is the body radius, ;0()() is the angular inclin-
ation of the body, /) = ¢ if transverse curvature effects are
included, and 4J) = o if transverse curvature is neglected.

The boundary conditions considered are

& (x,0) = o

U"(X) o) = U‘:r (x) (suction or injection permitted)

U (X, ®) = U (X)

Defining an eddy viscosity éf’by

- lirt = + 2%
Py = rve 3y
and using the Bernoulli equation for _?)% then yields
Momentum:
o4 a&?e
U ox T U-’——y ~Ple —5 — Qé 37,[/1 (/f-é*) =0

The continuity equation is identically satisfied by introducing
the stream function ?/ , defined by

(3.&’

€
PUR 5y
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=

€
/0(/%"——97)(

The independent variables are transformed from (X,)’) to (}' ‘7) .
J

where
X
1€
S = ru f e Rur ol (4-1a)
°
Y
/ v
7(x,7) = 2Edy (4-1b)
o
) ¥
and a dimensionless stream function 1 (§ 7)= is intro-
, SR A 3
duced. Then —5;- = ——, and the momentum equation becomes
Ue — I

;7£(/+t) rrer) 372] Y f)[l (.(,7 }

(4-2)
+7€3?%f2 t 2 g? ?;;{;_ 27; aag‘ar*;] -
where
L U
= A
and
(/+£)Zé=(—%,)ze= [+ 2600 J2Y 102 @ 7

Ple i

The quantity f( 3 ’7/ is the transverse curvature term.

The boundary conditions transform to

—Df (§0) = (4-3a)

T
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o /OZGV
S X eyl - Loow .
(§ =) =1 (4-3c)

Eq. (4-3a) is used in obtaining (4-3b). Eq. (4-3b) can be further
simplified by solving it as.an ordinary differential equation in

')C(S:/ O) . Then (4-3d) replaces (4-3b).

;
- [ ’°
Fa = i [ a0
ot 237 o Ue /Zf

The Cebeci, Smith eddy viscosity model consists of an inner re-
presentation éf. near the wall and an outer representation 6: away

from the wall. The inner expression is

KEy* “ho\: |24
€ = B (’-er)'lﬁ)’[

where KI is a constant and, for an impermeable wallk,

*See footnote on next page
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The outer expression is

8 (74
et = Kele J U= a)ely

’ . s+ 55 (F)°

where Ki'is a constant. The boundary layer thickness 5'13 taken

as the value of Yy where‘i%é = 0.995. With this definition of § ,
the values for the constants are taken* as K' = 0.4 and KL- 0.0168.
The inner and outer expressions are used as follows (for a given
value of X ): The eddy viscosity €7 is taken as 6":- for

O4L Y4t Y , and is taken as e;for ycf;ygg. The
value of Ye is the value of )’ at which 63 = 62. The eddy vis-
cosity &£711is thus continuous, but in general its derivative has a
finite discontinuity at y= )’c . In terms of (?, ’7) » the eddy vis-

cosity expressions become

ST NG

(.

2

. /-M/{/aﬂe,,_ o /%(d—/s\’)/l/lj

where

(4-4a)

’)]
. ai o o1 o
Y57 = J. ()¢ + 77

9 fulrl = 7(”(50)

1y

*More recent expressions for K,, K,, and A , are given in Section 5.
They should also be used here, but became available too late to make
the necessary changes.
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s p
S A R ALk
€y = — ~ 3 -
A Az [neoim ]t @
| + 5.5|—=

-~

_¢
(1+¢) o7

]

For two dimensional flow or axisymmetric flow without transverse
curvature, 7=0, and these simplify to
+_ 2 [J23 2 wy o,
6(’ = K, € 7 /'F ,
A Ryr
2

, _{1—‘5"’7 _f_(-_ no_ ’/1
o{/*ﬂ'}zﬁ[ Z—__é/d/lf,ll /ﬁ?\ ('Fw' ﬁ?)/ j se)

¢t = Koyt 75 — (fs~ fu)

° M A |+ 5§ (_%_ )é il
)

In the present application, only two dimensional airfoils are con-
sidered, and the simpler forms (4-5) are used (with € =0 also).
It is convenient to nondimensionalize ;‘(x) . This is done

by defining EJ(—)C'L) as

Xe JmY: y
O T

"

2 LE
where é(e*= ae/um. Then §' = /a'iC, Rey 3‘7*
vhere Ro = f|pC /" ¢ - The momentum equation (4-2) then be-

comes




Z

”[(/ ey \ng)j /(f‘)[

+ L 2 e* of f Kid L 1
70 anr 5* o° 9% 295197
where 3 v

/ ? ka 4¢‘§*
and

(r4¢)*€ = )+ 1640(7%,)16

The eddy viscosity expressions (4-5) become

el /lur) }/72:’ V——‘ 7]

€/1

-{/~ W[—(/%,)

6: = KZ _C_. lLecg “1?*' 478 +'[u.l’

[25% 60
Re,, 4

1 55 (%

The boundary conditions become

ria o - v

;{)—_7<),o)“+w’_o
2f s I -
__’:/. (5,0) = f5 = {

)
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]

] =2 wn

(4-8)

7

4 (l%‘*) ] /Bﬂ H (4-9a)

(4-9b)

(4-10a)

(4-10b)

{(4-10c)
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For two dimensional flow ( & =0), &(@‘_*follows from (3-14),
and _g*'and [ reduce to the definitions given in (3-17).
The output from the potential flow program therefore provides all
the potential flow input needed for the boundary layer program.

Eq. (4-7) subject to the boundary conditions (4-10) is solved
by a finite difference procedure (Ref. 8). First, the jyfderivac-
ives are replaced by finite difference expressions. For a general

function g (}'*/ , a three point Lagrange polynomial gives

Gl = A9+ AgUE ) + A I(AL) @

74 t*
oM
where
I |
Al - ¥ ex ) %-* _ e
Jd M JM_I M M"L
b* o
_ - ( Sm S m-2
AL = T A

( i?:«' ;:’;4-/) (i:_,- 5;1)

Ei:" §i:~/)

*
Q :ST-,’ F,:-L) <§.:«" st‘,n-z)

As

The ﬁ’*increments do not have to be equally spaced. For a two point

formula, (4-11) still holds, with




As
With the ;*derivatives replaced by finite difference expressions,

the momentum equation (4-7) becomes

Nl .

[<z+t):€ (13€%), ﬁf’]' + B (1= FM’l) Bt

Sk [N \ A ~ ' { . = &
Ty [‘fm (A;‘FM t Hl{;“-, ! Hsi«-‘).) - £A (AI'F,w \‘A’-&-a * Azt -t)]:o

where primes denote 47 derivatives. If solutions are known at
b X ot
$ e and S anen » this is an ordinary differential
equation for 1/;11 (7) s

Cebeci, Smith noted that round-off errors could be reduced by

introducing a "translated stream function" () defined by

p=f-7

= 0, the momentum equation in terms of (@is

Since Al + AZ + A

3
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3 /
s (& P ) ) y R
[ Crven, @] - 5, (20" + @)

/
+ ¢ (P +7)

” ‘1*

+ 23X VRO + Mg, + Ay o)

- (q/’.; ]) (Al (P’ 4 IQJ_ CP'M-, + A} q/:1~2.)J = O (4-12)

where ¢ = qlw. Eq. (4-12) will be solved by an iterative proced-
ure. It is first linearized by a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>